
International Journal of Computer Trends and Technology Volume 72 Issue 6, 59-63, June 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I6P108 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Architectural Considerations for Integrating with Finacle

Prasenjit Banerjee1, Rajarshi Roy2

1Technical Architect Director, Salesforce, IL, USA.

2Discover Financial Services, IL, USA.

1Corresponding Author : prasenjit.banerjee@salesforce.com

Received: 23 April 2024 Revised: 27 May 2024 Accepted: 07 June 2024 Published: 15 June 2024

Abstract - In today's world, every organization uses several different applications across the customer lifecycle journey. Core

banking application is like the central nervous system of a bank. It needs to be integrated with all the peripheral systems of the

bank. These systems include the CRM system, the internet banking systems, Mobile apps, to back-end systems used by banks for

their payment reconciliation or connect to ATM networks. All these systems have different integration requirements. Some of

these systems, such as ATMs, need the information in real time or as latest as possible. At the same time, other systems such as

printing a checkbook, may wait for the end of the day. In this article, we have explored the various ways to Integrate applications

with Finacle. Finacle provides a host of different options for Integrating with it.

Keywords - Finacle, Finacle integrator, API, System integration, Middleware, Service oriented architecture.

1. Introduction
Finacle is a core banking solution developed by Infosys.

It is currently licensed and maintained by Edgeverve Systems,

a wholly-owned subsidiary of Infosys Technologies. Limited.

Finacle started as a small project to serve the core banking

needs of Canara Bank.

Later, Infosys saw potential in making it a full-fledged

core banking service product in 1999. Finacle is now used as

the core banking platform by more than 2000 banks and

financial services institutions across 100 countries. It has

1.08B customers and 1.3B bank accounts managed by Finacle.

While Integrating with an application as mammoth as the

size and scale of Finacle, Architects at any banking or

financial organization need to put together a solid thought

process on identifying the needs of these connecting systems.

Some due diligence on the following information will be

helpful in making a data-oriented decision on Integration

patterns that need to be applied.

1.1. Considerations for Deciding the Integration Design

● Transactions per second [1]

● Payload size of the data integrated [2].

● Acceptable latency of the data interchange

● How fresh the data needs to be.

● Security requirements

● Network boundary will it cross [3].

● Bulk or Incremental

● Robust Automated Validation Framework

● Fault Tolerance and reliability

Table 1. Integration patterns for integrating with finacle

Design

Pattern

Use case Consideration

Request-

response

Fetching

customer

balance for

CRM

application

Transaction per

second (TPS),

payload size and

latency

Batch Uploading

Customer

information for

statement

generation [4]

Bulk or

Incremental,

Times of Day,

error and retry,

Data stale

Publish-

subscribe

ATM

Withdrawal,

fraud detection

Reliability,

Scalability

Point to

point

Loan origination

system

transferring lead

data to Finacle

Latency and

resilience

1.2. Finacle Support for Modularity and Extensibility

Although the core engine of Finacle was built more than

25 years ago, the architects at Finacle made some very

important architectural decisions, which paid high dividends

later. First, they created a Service based architecture, a time

when such a term did not even exist. They built extensible

subroutines that allowed every event to be customized without

tampering with the core functionality. Let us understand what

that means. Finacle core functionalities were created in a

modular fashion using standard C/C++ routines or functions

that catered to a unit level of functionality [5]. The subroutines

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1prasenjit.banerjee@salesforce.com

Prasenjit Banerjee & Rajarshi Roy / IJCTT, 72(6), 59-63, 2024

60

can be considered as Finacle building blocks. These

subroutines are callable, which means they can be invoked

from other subroutines and from customized scripts applied on

top of product code. These subroutines are extensible. This

means that although these routines themselves cannot be

modified, several custom events can be added before the after

the invocation, which allows for custom business rules to be

applied or, in some cases, overrides the default behavior of the

product logic. This modularity and composability allowed

Finacle to expose these business capabilities as services.

These Services were mainly callable over the RPC protocol

[6].

Fig. 2 A working model of EJB-based web service

1.3. Finacle Integrator Framework

Finacle Integrator is a java module that is built on

Enterprise Java Beans (EJBs) that allows the extension of

shared objects as web services over the TCP/IP network.

Finacle Integrator allows Finacle to extend the service

functionality beyond the Finacle boundary while observing a

common web service protocol. Finacle implements a

reliability pattern with Java Messaging Service (JMS).

Web server

Terminal

Subroutines

Finacle Cluster 1

Subroutines

Finacle Cluster 2

Database

Database

Load

Balancer
Text

Message

Braker

Firewall

Batch Upload

EJB Client

HOME Interface

EJB Home Stub

Remote interface

ETB Remote Stub

Corba/server

Applet client

EJB Container

HOME Interface

EJB Home Stub

Remote Interface

EJB Object

Deploy

ment

descrip

tion

DB

EJB Server Client

BEAN

Prasenjit Banerjee & Rajarshi Roy / IJCTT, 72(6), 59-63, 2024

61

Finacle implemented a reliability pattern with Java

Message Service (JMS) that is essential for ensuring that

messages are processed reliably in a distributed system.

JMS provides a common way for Java applications to

create, send, receive, and read messages, allowing for loosely

coupled, reliable, and asynchronous communication [8].

To ensure reliability in Finacle Integrator, JMS was

leveraged with the following key strategies:

● Ensured that messages are set to be persistent. Persistent

messages are stored by the JMS provider until they are

successfully delivered to the consumer, surviving

provider failures.

● Finacle controls how the consumer acknowledges receipt

of a message. This can be automatic or managed by the

application for more control over the process. Finacle

allows auto-acknowledgement; the Finacle

acknowledgement EJB automatically acknowledges a

consumer's receipt of a message and allows client

acknowledgment. The client acknowledges the message

by calling the message. Acknowledge () method [9].

● Finacle follows ACID properties of Transactions to

ensure that a series of operations are completed

successfully before committing them. If a failure occurs,

the transaction can be rolled back to avoid partial

processing of messages. It rolls back the transaction in

case of an error.

● Configure redelivery policies on the JMS provider to

handle message redelivery in case of consumer failure.

This includes settings for maximum redelivery attempts

and delay intervals.

● Use a Dead Letter Queue (DLQ) to handle messages that

cannot be delivered or processed after several attempts.

This allows for manual intervention or automated

processing to handle failed messages.

● Set a time-to-live for messages to ensure they are not

delivered if they cannot be processed within a specific

timeframe. This is useful for time-sensitive messages

[10].

● Implement robust error handling and logging mechanisms

in your message consumers. This helps in diagnosing

issues and taking corrective actions for message

processing failures.

● Design your message processing logic to be idempotent,

meaning that receiving and processing the same message

multiple times does not result in incorrect behaviour or

side effects [11].

● Consider the scalability of your JMS setup. Using

Message-Driven Beans (MDBs) in an Enterprise

JavaBeans (EJB) container or configuring multiple

consumers for a queue can help distribute the load.

Integration via Synchronous calls over HTTP
Finacle Integrator allows for connecting to the Service

Objects (SOs) via SOAP. The Finacle Integrator acts as a

middle layer between the SOs via an EJB interaction that

allows these objects to communicate via SOAP web services,

although they are not typically designed to communicate over

HTTP vis TCP/IP protocol. Thus, all the integration with

internet banking and mobile banking platforms and apps can

be done using the Finacle Integrator module, and it scales well.

The synchronous API call over Http/Https to integrate

Finacle closely resembles a Service Oriented Architecture

(SOA). Finacle publishes a catalogue of such shared objects

that can be used as services. These Shared objects are wrapped

with standard EJB templates and exposed as SOAP web

services.

The contracts for these services are available in the

internal registry very similar to a UDDI registry of the

organization. Although there was no formal policy-based

governance in place, these APIs can be secured through

authentication and authorization mechanisms by integrating

with an external identity provider. These services are a huge

asset for any customer as these services can be leveraged as a

hook that is available to systems outside of Finacle.

These services allow for service-to-service orchestration,

allowing external systems to perform complex business

processes and functions. While these services have a fixed

schema in which they expect their inputs, these services can

transform data from one format to another although the most

common formats are XML and JSON-based message formats.

This is where a smart automated Validation Framework

should be used during the integration as this Architecture is

very conducive to such a framework to not only get the

maximum value out of your Validation process but also save

a lot of time in the validation process [12].

1.3. Factors Driving the Architectural Decisions

When designing a data integration system with Finacle,

considering factors such as transactions per second, payload

size, acceptable latency, data freshness, security requirements,

network boundaries, data transfer methods (bulk or

incremental), and system fault tolerance and reliability is

crucial.

These parameters signixficantly influence the

architecture, technology selection, and implementation

strategy of the system. Here is an inference that considers

these points:

Prasenjit Banerjee & Rajarshi Roy / IJCTT, 72(6), 59-63, 2024

62

Table 2. Implication and recommendation on the design decisions

Factors Implications Recommendations

Transactions

Per Second
High TPS requires scalable solutions.

Evaluate downstream system scalability, potential

Finacle bottlenecks, and technology stack's throughput

capabilities.

Payload Size
Large payloads necessitate robust data

platforms to be aware of Finacle limitations.

Assess data storage solutions and network capacity for

efficient data handling and transfer.

Acceptable

Latency

Low latency demands real-time processing

frameworks.

Determine real-time processing needs versus batch

processing feasibility and the impact on user

experience.

Data Freshness
The need for current data indicates real-time

data exchange.

Consider the balance between real-time data

processing and system resource utilization.

Security

Requirements

High-security calls for encryption and

compliance with standards.

Implement robust security measures and ensure

compliance with relevant data protection regulations.

Network

Boundary

Public network transactions require enhanced

security measures.

Analyze network architecture for secure data

transmission and identify potential vulnerabilities.

Bulk or

Incremental

Bulk transfers fit with batch processing, while

incremental updates benefit from CDC

mechanisms.

Decide based on data volume, frequency of updates,

and system capabilities for handling data ingestion.

Fault

Tolerance

High availability and reliability demand robust

infrastructure and Finacle is very robust on

that subject.

Ensure system redundancy, implement failover

mechanisms, and consider the impact of downtime on

operations.

Robust

Validation

Customizations require Quick and Robust

Validation mechanisms for faster go to

Market.

Build a Smart Automation Framework during the

implementation phase itself and Maintain it for

Incremental Customizations in Future.

Fig. 3 SOAP web services using finacle integrator

2. Cloud-Native Design Considerations
While banks have the strongest security requirements,

nowadays, information security teams of several banks can

provide green signals to host their core banking solutions in

the cloud. So, there is a strong market demand to provide a

core banking solution as a service. The Finacle team can cope

with design challenges and has been able to host Finacle in a

multi-tenant environment with robust security features. This

allows banks to reduce the total cost of ownership while

availing the benefits, the cloud provider has to offer. A cloud-

native full-hosted solution takes care of the high availability

of the solution. It helps to scale the infrastructure on demand,

based on consumption. The adoption of a microservices-based

approach on top of a Kubernetes-based deployment allows for

API-based integration over HTTP/HTTPs. These take care of

the governance of the services through an API management

layer. Central policy-based governance allows for the

application of tight security policies to avoid spike control and

denial of service attacks.

3. Conclusion
The integration of Finacle, a leading banking solution,

into an organization's existing systems and processes

represents a strategic step towards achieving high levels of

Mobile

Banking

Message Dispatcher Servlet

Endpoint

mapping
Endpoint

Adaptor

Finacle Integrator

SOAP Endpoint methods

Endpoint

mapping

Finacle Core

Internet

Banking

Channel

Services

http/http

s

Java

Bean

Database

Prasenjit Banerjee & Rajarshi Roy / IJCTT, 72(6), 59-63, 2024

63

operational efficiency, enhanced customer experience, and

innovative financial service offerings. As Finacle offers a

comprehensive suite of banking functionalities, from core

banking solutions to digital engagement platforms, its

integration is not just a technological upgrade but a

transformative initiative that can drive an institution towards

global banking standards. Key considerations, such as

transactions per second, payload size, acceptable latency, data

freshness, security requirements, network boundaries, the

choice between bulk or incremental updates and a Robust

Smart Automated Validation Framework play a crucial role in

the successful implementation of Finacle. These factors must

be meticulously planned and managed to ensure that the

integration process is smooth, scalable, and secure, thereby

enabling seamless operations and real-time data processing

capabilities.

Moreover, the fault tolerance and reliability of the system

are paramount, necessitating a robust infrastructure that can

withstand various challenges and ensure uninterrupted service

delivery. By addressing these considerations, institutions can

leverage Finacle to not only streamline their operations but

also to innovate and create personalized banking experiences

for their customers. In conclusion, the integration of Finacle is

a complex yet rewarding endeavor that requires careful

planning, consideration of several technical and strategic

factors, and a commitment to excellence. When done

successfully, it positions financial institutions to take

advantage of the evolving digital landscape, meet the growing

demands of their customers, and stay competitive in the global

market.

References
[1] Noussair Fikri et al., “An Adaptive and Real-Time Based Architecture for Financial Data Integration,” Journal of Big Data, vol. 6, pp. 1-

25, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[2] Norbert Bieberstein, Service-Oriented Architecture Compass: Business Value, Planning, and Enterprise Roadmap, FT Press, 2006.

[Google Scholar] [Publisher Link]

[3] Latha Srinivasan, and Jem Treadwell, “An Overview of Service-Oriented Architecture, Web Services and Grid Computing,” HP Software

Global Business Unit, vol. 2, pp. 1-13, 2005. [Google Scholar] [Publisher Link]

[4] Tony Chao Shan, and Winnie Wei Hua, “Service-Oriented Solution Framework for Internet Banking,” International Journal of Web

Services Research, vol. 3, no. 1, pp. 29-48, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[5] Peter Gomber et al., “On the Fintech Revolution: Interpreting the Forces of Innovation, Disruption, and Transformation in Financial

Services,” Journal of Management Information Systems, vol. 35, no. 1, pp. 220-265, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[6] Markos Zachariadis, and Pinar Ozcan, “The API Economy and Digital Transformation in Financial Services: The Case of Open Banking,”

SSRN, pp. 1-28, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[7] Ummu Hani’ Binti Hair Zaki, “Web Service Architecture for Scholarly Publication,” PhD Dissertation, Universiti Teknologi Malaysia,

2016. [Google Scholar] [Publisher Link]

[8] Fatna Belqasmi, Roch Glitho, and Chunyan Fu, “Restful Web Services for Service Provisioning in Next-Generation Networks: A

Survey,” IEEE Communications Magazine, vol. 49, no. 12, pp. 66-73, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[9] Felipe Osses, Gastón Márquez, and Hernán Astudillo, “An Exploratory Study of Academic Architectural Tactics and Patterns in

Microservices: A Systematic Literature Review,” Advances in Software Engineering at the Ibero-American Level, pp. 71-84, 2018.

[Google Scholar] [Publisher Link]

[10] Konstantinos Vandikas, and Vlasios Tsiatsis, “Microservices in IoT Clouds,” Cloudification of the Internet of Things, IEEE, pp. 1-6, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[11] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl, “Architectural Patterns for Microservices: A Systematic Mapping Study,” CLOSER

2018: Proceedings of the 8th International Conference on Cloud Computing and Services Science, Funchal, Madeira, Portugal, 2018.

[Google Scholar] [Publisher Link]

[12] Emirates NBD Bank Achieves End-to-end Traceability and Efficiency by Implementing Finacle Core Banking Automation Testing

Solution. [Online]. Available: https://www.testhouse.net/wp-content/uploads/2019/10/Finacle-Core-Banking-Automation-Testing-

Solution-for-Emirates-NBD-Case-Study-Testhouse.pdf

https://doi.org/10.1186/s40537-019-0260-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+adaptive+and+real-time+based+architecture+for+financial+data+integration&btnG=
https://link.springer.com/article/10.1186/s40537-019-0260-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Service-Oriented+Architecture+Compass%3A+Business+Value%2C+Planning%2C+and+Enterprise+Roadmap&btnG=
https://www.google.co.in/books/edition/Service_oriented_Architecture_Compass/NISyExeJ5mAC?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Overview+of+Service-Oriented+Architecture%2C+Web+Services+and+Grid+Computing&btnG=
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7f5ac1b5abcfd552b63777c9ad2687a84a78543a
https://doi.org/10.4018/jwsr.2006010102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Service-Oriented+solution+framework+for+internet+banking&btnG=
https://www.igi-global.com/article/service-oriented-solutionframework-internet/3073
https://doi.org/10.1080/07421222.2018.1440766
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+fintech+revolution%3A+Interpreting+the+forces+of+innovation%2C+disruption%2C+and+transformation+in+financial+services&btnG=
https://www.tandfonline.com/doi/abs/10.1080/07421222.2018.1440766
https://dx.doi.org/10.2139/ssrn.2975199
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+API+economy+and+digital+transformation+in+financial+services%3A+The+case+of+open+banking&btnG=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2975199
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Web+Service+Architecture+for+Scholarly+Publication&btnG=
https://core.ac.uk/download/pdf/199241777.pdf
https://doi.org/10.1109/MCOM.2011.6094008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RESTful+web+services+for+service+provisioning+in+next-generation+networks%3A+a+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/6094008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+exploratory+study+of+academic+architectural+tactics+and+patterns+in+microservices%3A+A+systematic+literature+review&btnG=
https://researchers.unab.cl/en/publications/an-exploratory-study-of-academic-architectural-tactics-and-patter
https://doi.org/10.1109/CIOT.2016.7872912
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Microservices+in+IoT+clouds&btnG=
https://ieeexplore.ieee.org/abstract/document/7872912
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architectural+patterns+for+microservices%3A+a+systematic+mapping+study&btnG=
https://bia.unibz.it/esploro/outputs/991005773017601241

